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Solutions of the wave equation in a plasma with stochastic ray trajectories have been considered. In par-
ticular, we have studied the fast magnetosonic wave in the limit of weak damping. It is found that the often
used assumption of a uniform wave energy density in the phase space for stochastic wave solutions does not
hold, a conclusion which should be valid not only for applications related to wave propagation in plasmas. A
wave-field model for stochastic fields has been obtained for tori with nearly circular cross sections.
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Hamiltonian systems with stochastic ray trajectories ap-
pear in several disciplines of physics, e.g., plasma physics,
quantum mechanics [1,2], electro-optics [3], acoustics. In
connection with rf heating and current drive in thermo-
nuclear fusion plasma experiments, an interest has arisen in
waves propagating in a toroidal cavity. The knowledge of the
wave-field strength and spectrum are required for calculating
the power deposition and the effect of wave particle interac-
tion. As the symmetry of the equilibrium is broken, e.g.,
going from a circular cross section to an elongated one, the
ray trajectories can become stochastic. How the wave fields
are distributed for such equilibria is an important question.
Berry [1,2], when analyzing the wave function associated
with stochastic motion for the Helmholtz equation, assumed
for simplicity the Wigner function (local Fourier transform)
of an eigenfunction to be isotropic in k& space for any point in
X. On this basis McDonald developed a method of calculat-
ing the wave field in the limit of weak damping for weakly
inhomogeneous fields, viz., the wave kinetic' equation
(WKE) [4,5]. This method is based on the fact that along the
ray trajectories in the phase space the wave energy is con-
stant. Assuming that the stochastic rays cover uniformly the
propagating region in phase space a simple model of the
wave field could then be obtained which did not require any
detailed calculation of ray trajectories. Another approach to
the problem was taken by Moreau et al. [6], who expanded
the wave fields in terms of eigenfunctions of a cylindrical
equilibrium with a circular cross section, and derived a mas-
ter equation for the wave spectrum. They concluded that, due
to the large diffusion in the eigenmode expansion coeffi-
cients, the energy density is constant in phase space for
lower hybrid waves propagating in tokamaks [7]. Here we
analyze the field of the magnetosonic wave, which is one of
the most commonly used waves for heating of fusion plas-
mas, in the limit of weak damping for a class of toroidal
equilibria. We have found that the eigenfunctions cannot be
described as locally isotropic in k. A model to describe the
“stochastic” wave fields for noncircular or toroidal equilibria
in terms of ‘“‘eigenfunctions” for a circular cylindrical equi-
librium is given. Because we are not relying on any property
specific for the fast magnetosonic wave we make the conjec-
ture that in general the solution to a system with stochastic
ray trajectories cannot be described by an assumption of ho-
mogeneous energy density in phase space.
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In McDonald’s model the wave field is represented by
local Fourier series (transforms) varying in space, thus rep-
resenting a function of phase space (x,k). When projecting a
constant energy density from phase space into real space the
energy density, W(x), is obtained by summing (integrating)
all propagating modes divided with their group velocity

U(x,m)
—, (M

W(x)= X
m ar

where U(x,m) is the wave energy density in phase space,

Uy the radial component of the group velocity, and m the

poloidal mode number. The group velocity is obtained from

the dispersion relation of the fast magnetosonic wave

(w/c)*|D|?

ki:(w/c)ZS—kﬁ— —(w/c)zs—kﬁ ,

2

where S and D are the diagonal and off-diagonal compo-
nents of the perpendicular part of the dielectric tensor [8], L
and || denote the directions perpendicular and parallel to the
equilibrium magnetic field, respectively. For the case consid-
ered here S <O and k, depends essentially on the density, and
is approximately constant for constant density profiles. The
propagating modes in a large aspect ratio torus with a nearly
circular cross section are those for which k2>0, where
k*~k*—m?>/r?, r denotes the distance to the magnetic axis,
i.e., approximately the distance to the geometrical center of
the poloidal cross section. According to the model described
by Eq. (1) the wave field of the magnetosonic wave for large
aspect ratio tori with constant plasma density should increase
with minor radius because of the increasing number of
propagating poloidal modes. This disagrees with numerical
solutions for which still axially peaked wave-field profiles
are obtained, but not as peaked as those of a cylinder with a
circular cross section [9,10]. The ergodic behavior of the
trajectories is manifested by the enrichment of the poloidal
Fourier spectrum, but the peaked energy density profiles are
not consistent with an isotropic energy density in the propa-
gating region of the phase space. The energy density in phase
space depends on how frequently the ray visits the volume
element. Thus the assumption of an ergodic ray trajectory
covering the region uniformly cannot hold for these equilib-
ria.
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FIG. 1. The radial dependence of the poloidal Fourier coeffi-
cients of the wave field calculated for a Solovev equilibrium with
ellipticity=1.26. The square of the coefficients are averaged for
neighboring m and s. Dotted curve is Eq. (3) normalized at s =0.5.

Because of the discrepancy between the WKE model and
the real solutions, we study the solutions of the fast magne-
tosonic wave in axially symmetric equilibria with the aim of
finding a model for ‘“‘stochastic’’ wave fields. Since the tor-
oidal angle is an ignorable coordinate we Fourier decompose
the wave field with respect to it and study the solution for a
fixed toroidal model number, n,=30. The wave equation is
solved with the global wave code LION [11], using the fol-
lowing parameters: n=3x%10' m™3, T=5 keV, f=33 MHz,
By=3.4T, Ry=12 m and an aspect ratio Ry /a =10, for these
parameters k, ~20 m~'. We Fourier decompose the solutions
in poloidal angle and average the square of the Fourier co-
efficients, (|E\ u|*)m.s, Over a radial wavelength, over
neighboring m and over equilibria with nearly similar plasma
density. The radial dependency of some of the averaged Fou-
rier coefficients are seen in Fig. 1 where we label the mag-
netic surface with s=+/¢/¢,, along a constant 6 line s is
nearly proportional to r, ¢ denotes the poloidal magnetic
flux and ¢, the value at the plasma boundary. The square of
the Fourier coefficients decrease approximately as 1/s in-
stead of being nearly constant in the region of propagation as
the WKE model suggests, i.e., where r>m/k, . When the
geometry deviates from a circular cylinder the equations be-
come in general nonseparable and the solutions become ir-
regular. In Fig. 2 the poloidal mode spectrum is shown for
different magnetic surfaces. The spectra near the magnetic
axis are more narrow because of fewer propagating modes.
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FIG. 2. Poloidal mode number spectrum. The numbers indicate
the s value of the surfaces.
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The radial dependence of the wave field can be under-
stood by comparing the ray trajectories for a circular cylinder
with those of a cylinder with slightly noncircular cross sec-
tion or a torus. Since the corresponding ray trajectories for a
single crossing are close to those of the circular cylinder, the
radial variation of the poloidal Fourier modes should be
close too. It is only after several crossings of the plasma the
trajectories depart, when they depart the ray trajectories will
then be represented by another poloidal mode number. Be-
cause of the similarities of the ray trajectories for a single
pass we use a global expansion of the eigenfunctions in
terms of the eigenfunctions of a circular cylinder instead of a
local expansion to model the wave field. Further, we assume
the radial wavelength to be sufficiently short and the damp-
ing sufficiently large for there to be a resonating mode for a
given frequency in the appropriate range and for every po-
loidal mode number for which the mode propagates. This
leads us to the following model the stochastic wave fields:

Ex=2, JCog(m)h(m,r)yoexpli(mb+way)]  (3)

where o and o, are random numbers such that {o;)=0 and
(o?)=1, the normalization constant Cy, is determined by the
total absorbed power, N\ is the direction orthogonal both to
the magnetic field and the normal of the magnetic surface,

Tk, r), k,r<C,|m|+C,
1
, k,r=C +C
h(m,r)= Wr(ki_mz/rz)l/z r 1|m| 2
2 Ai%(x)
7173 > x>—1.2
r|Cs
— 173 1
X—IC3| (r—rC)—4r3!C3|2/3,
c=L e +2m2 !
3_5( J_)r=rc rg 2}"2 5
C,=1.1143, (C,=0.9557,

r. is the cutoff near the plasma boundary, k, =k, (r,6) and
g(m) is a weight function. Unlike the true eigenmodes of a
circular cylinder 4(m,r) has a 6 dependence for finite aspect
ratios through k£, . The summation is here taken over all
waves propagating somewhere in the plasma. Outside the
cutoff, r=m/k, , the solution is approximated by the WKB
solution. Inside the cutoff and in a neighborhood of it the
solution is approximated by the square of the Bessel func-
tion, J,, , at the inner evanescent region and with the square
of the Airy function, Ai, at the outer evanescent region (for
constant plasma density the Airy function is not used). The
approximation of the Fourier modes by Eq. (3) avoids the
nonphysical divergence of the WKB approximation at the
cutoffs and is able to describe the wave field in the evanes-
cent region. For comparison we have plotted h(m,r) for
m=4 in Fig. 1 using the same averaging as for calculating
the averaged Fourier coefficients (averaging over neighbor-
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FIG. 3. The flux surface integrated wave field (F(s)) for an
elliptical Solovev equilibrium with constant density profile,
ellipticity=1.26, and aspect ratio of 10. Dotted lines Eq. (3) with
different «, the dashed line for constant energy density in the propa-
gating region of the phase space, and full line the LION code. A1l is
an antenna with constant current density for |6|<<40° and A2 a he-
lical m=1 and n,=30 antenna.

ing s and m). In the region where the WKB approximation is
valid good agreement between the model and the code is
obtained.

For a cylinder with a circular cross section the Fourier
modes are uncoupled and the weight function g(m) is deter-
mined by the Fourier decomposition of the antenna current
and coupling. Here an antenna modeled by a constant sheet
current for | 6| <40° is used. For a nonseparable system the
Fourier modes couple and a much wider spectrum is ob-
served, the averaged Fourier components decrease with the
modulus of the wave number, but not monotonically. The
modulus of the wave-field square averaged by slightly differ-
ent equilibria is given by

(IE\?=Cy ; g(m)h(m,r) (4)

where the weight function g(m) is found by comparison be-
tween (F(s))=[y){|E\|*)dV calculated with the LION
code and (F(s)) calculated with Eq. (4). For large aspect
ratio, elliptic Solovev equilibria with a constant plasma den-
sity g(m)=~|m|™* for m#0 with k~0.65 and g(0)=1 ap-
proximate (F(s)) well as can be seen in Fig. 3 [12]. The
wave field should for stoichastic ray trajectories be indepen-
dent of the antenna; we have included calculations of (F(s))
for a helical antenna exciting essentially only the m=1
mode. As can be seen from the figure both wave fields are
well described by the model. For comparison (F(s)) is also
shown assuming the wave energy to be constant in the region
of the phase space where the waves propagate, giving a
much broader wave-field distribution.

The stochastic wave-field model given by Eq. (4) should
approximate the wave field averaged over similar equilibria.
For low density, corresponding to long wavelength, only a
few poloidal Fourier modes appear, a stochastic wave-field
description becomes then less meaningful. As the density
increases the wave length decreases and the deviations of the
flux surface averaged wave field from individual solutions
become less and the model becomes more appropriate. For
the comparisons of (F(s)) shown in Figs. 3-5 we have av-

FIG. 4. Comparison of the flux surface integrated wave field
(F(s)) for elliptic equilibria with large aspect ratio, full lines LION
code and dotted lines Eq. (3), (a) with a density profile
n=ny(1—0.9s%) and (b) with a density profile n=ny(1+4s?).

eraged the square of the wave fields over equilibria with
slightly different density.

The number of poloidal modes increases with density;
variation of the density profile becomes therefore a critical
test for the applicability of the model. A density profile de-
creasing with radius and one increasing with radius are used
for this test. As can be seen in Fig. 4 the model describes the
change in the wave fields due to the change in the density
profile rather well. For tori with small aspect ratios, k, will
vary significantly along the outer flux surfaces. Comparison
of (F(s)) for a small aspect ratio equilibrium with constant
density is shown in Fig. 5.

A stochastic model of the wave field for short wavelength
modes in the limit of weak damping has been developed. It is
applicable to wave propagation in toroidal geometries for a
rather wide range of equilibria. From the comparison shown
in Figs. 4 and 5 we conclude that the model described by Eq.
(4) with the same weight function g(m) is able to approxi-
mate “‘stochasticity”” caused by ellipticity as well as by tor-
oidicity. The model describes the modulus of the wave field
averaged over nearly similar equilibria, e.g., for which the
plasma densities vary slightly. In addition to treatment near
the cutoff and in the evanescent regions our formula deviates
from the WKE by the 1/r term in the h(m,r) function and
that the weight function g(m) is not constant. Both of the
latter effects give rise to a more centrally peaked wave field,
but not as peaked as for a circular cylinder. The general
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FIG. 5. Comparison of the flux surface integrated wave field
(F(s)) for an equilibrium with a circular cross section and an as-
pect ratio of 3. Full line LION code and dotted line Eq. (3).
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conclusion one can draw from our findings is that the often
used assumption of a constant wave energy density in the
phase space does not hold. Owing to the general nature of
the problem the analysis should have implications on sto-
chastic solutions of the Helmholtz equation as well as to
propagation of other kinds of weakly damped plasma waves.
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